College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 99

Answer

$\left(-3, 0 \right) \cup \left(2, \frac{9}{2}\right] $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{1}{x-2} +\frac{2}{x+3} \geq \frac{3}{x},$ $\displaystyle \frac{1}{x-2} +\frac{2}{x+3}- \frac{3}{x }\geq 0$, $\displaystyle \frac{-4x+18}{(x)(x-2)(x+3)}\geq 0$, $f(x)=\displaystyle \frac{-4x+18}{(x)(x-2)(x+3)}\geq 0$, 2.The cut points are: $\displaystyle \frac{-4x+18}{(x)(x-2)(x+3)}=0$ $x=-3$ or $x=0$ or $x=2$ or $x=\frac{9}{2}$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \geq 0 ? \\ & & \displaystyle \displaystyle \frac{-4a+18}{(a)(a-2)(a+3)} & \\ (-\infty,-3) & -5 & \frac{(+)}{(-)(-)(-)}=(-) & F \\ (-3, 0) & -1 & \frac{(+)}{(-)(-)(+)}=(+) & T \\ (0, 2) & 1 & \frac{(+)}{(+)(-)(+)}=(-) & F \\ (2, \frac{9}{2}) & 3 & \frac{(+)}{(+)(+)(+)}=(+) & T \\ (\frac{9}{2},\infty) & 10 & \frac{(-)}{(+)(+)(+)}=(-) & F \\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left(-3, 0 \right) \cup \left(2, \frac{9}{2}\right] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.