College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 94

Answer

$\left( -\infty, -2] \cup \right[2,3]$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x^3-3x^2-4x+12\leq 0$, $x^2(x-3)-4(x-3) \leq0$, $(x^2-4)(x-3)\leq 0$, $(x-2)(x+2)(x-3) \leq 0,$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x-2)(x+2)(x-3) =0$ $x=-2$ or $x=2$ or $x=3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & &(a-2)(a+2)(a-3) & \\ (-\infty, -2) & -5 & (-)(-)(-)=(-) & T\\ (-2, 2) & 0 & (-)(+)(-)=(+) & F\\ (2,3) & \frac{3}{2} & (+)(+)(-)=(-)& T\\ (2,\infty) & 5 & (+)(+)(+)=(+) & F \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left( -\infty, -2] \cup \right[2,3]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.