College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 96

Answer

$(-\infty,-2) \cup (-1,1) \cup (2,\infty)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x^8-17x^4+16\gt 0,$ let's let $x^4=k$ $k^2-17k+16\gt 0,$ $k^2-k-16k+16\gt 0,$ $k(k-1)-16(k-1)\gt0,$ $(k-16)(k-1)\gt0,$ substituing back in $x^4=k$. $(x^4-1)(x^4-16)\gt0,$ $(x^2+1)(x^2+4)(x-1)(x+1)(x-2)(x+2)\gt0,$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x^2+1)(x^2+4)(x-1)(x+1)(x-2)(x+2) =0$ $x=-2$ or $x=-1$ or $x=1$ or $x=2$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \gt 0 ? \\ & &(a^2+1)(a^2+4)(a-1)(a+1)(a-2)(a+2) & \\ (-\infty, -2) & -5 & (+)(+)(-)(-)(-)(-)=(+) & T\\ (-2, -1) & -\frac{3}{2} & (+)(+)(-)(-)(-)(+)=(-) & F\\ (-1,1) & 0 & (+)(+)(-)(+)(-)(+)=(+) & T\\ (1, 2) & \frac{3}{2} & (+)(+)(+)(+)(-)(+)=(-) & F\\ (2,\infty) & 5 & (+)(+)(+)(+)(+)(+)=(+) & T \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-\infty,-2) \cup (-1,1) \cup (2,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.