College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 95

Answer

$(-3,3)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x^4-7x^2-18\lt 0,$ let's let $x^2=k$ $k^2-7k-18\lt 0$, $k^2+2k-9k-18\lt0$, $k(k+2)-9(k+2)\lt0,$ $(k-9)(k+2)\lt0,$ substituing back in $x^2=k$. $(x^2+2)(x^2-9)\lt0,$ $(x^2+2)(x-3)(x+3)\lt0,$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x^2+2)(x-3)(x+3) =0$ $x=-3$ or $x=3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & &(a^2+2)(a-3)(a+3) & \\ (-\infty, -3) & -5 & (+)(-)(-)=(+) & F\\ (-3, 3) & 0 & (+)(-)(+)=(-) & T\\ (3,\infty) & 5 & (+)(+)(+)=(+) & F \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-3,3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.