College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 98

Answer

$\left(-2,\frac{1}{7}\right]$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{3x+1}{x+2} \leq \frac{2}{3}$ $\displaystyle \frac{3x+1}{x+2} -\frac{2}{3}\leq 0,$ $\displaystyle \frac{9x+3-2x-4}{3x+6} \leq0,$ $\displaystyle \frac{7x-1}{3x+6}\leq0,$ 2. The cut points are: $\displaystyle \frac{7x-1}{3x+6}= 0$ $x=-2$ or $x=\frac{1}{7}$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & & \displaystyle \frac{7a-1}{3a+6}& \\ (-\infty,-2) & -10 & \frac{(-)}{(-)}=(+) & F \\ (-2,\frac{1}{7}) & 0 & \frac{(-)}{(+)}=(-) & T \\ (\frac{1}{7},\infty) & 10 & \frac{(+)}{(+)}=(+) & F \\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left(-2,\frac{1}{7}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.