College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 102

Answer

$(0,1) $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $f(x)=\frac{1}{\sqrt {x-x^4}},$ Take the denominator and factorise. $\sqrt {x-x^4} \gt 0,$ $x-x^4\gt 0,$ $x(1-x^3)\gt0,$ $x(1-x)(x^2+x+1)\gt0,$ 2. The cut points are: $(x)(1-x)(x^2+x+1)=0$ $x=0$ or $x=1$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $g(x)=x-x^4$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & factors,signs & g(a),signs \\ & &(a)(1-a)(a^2+a+1)& \\ (-\infty, 0) & -5 & (-)(+)(+)=(-) & Undefined\\ (0, 1) & \frac{1}{2} & (+)(+)(+)=(+) & (+)\\ (1,\infty) & 5 & (+)(-)(+)=(-) & Undefined \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. The Domain is: $(0,1) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.