College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 100

Answer

$\left[-\frac{24}{7}, -2\right) \cup \left(0, 3 \right)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{1}{x+2} +\frac{3}{x-3} \leq \frac{4}{x},$ $\displaystyle \frac{1}{x+2} +\frac{3}{x-3}- \frac{4}{x }\leq 0$, $\displaystyle \frac{7x+24}{(x)(x+2)(x-3)}\leq 0$, $f(x)=\displaystyle \frac{7x+24}{(x)(x+2)(x-3)}\leq 0$, 2.The cut points are: $\displaystyle \frac{7x+24}{(x)(x+2)(x-3)}=0$ $x=-\frac{24}{7}$ or $x=-2$ or $x=0$ or $x=3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & & \displaystyle \displaystyle \frac{7a+24}{(a)(a+2)(a-3)}& \\ (-\infty,-\frac{24}{7}) & -4 & \frac{(-)}{(-)(-)(-)}=(+) & F\\ (-\frac{24}{7}, -2) & -3 & \frac{(+)}{(-)(-)(-)}=(-) & T\\ (-2, 0) & -1 & \frac{(+)}{(-)(+)(-)}=(+) & F\\ (0, 3) & 1 & \frac{(+)}{(+)(+)(-)}=(-) & T\\ (3,\infty) & 10 & \frac{(+)}{(+)(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left[-\frac{24}{7}, -2\right) \cup \left(0, 3 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.