College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 358: 101

Answer

$\left[-3, \frac{8}{3}\right] $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $f(x)=\sqrt {24-x-3x^2},$ $\sqrt {24-x-3x^2} \geq 0,$ $24-x-3x^2\geq 0,$ $-3x^2-9x+8x+24,$ $-3x(x+3)+8(x+3),$ $(-3x+8)(x+3),$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(-3x+8)(x+3)=0$ $x=-3$ or $x=\frac{8}{3}$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $g(x)=24-x-3x^2$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & factors,signs & g(a),signs \\ & &(-3a+8)(a+3)& \\ (-\infty, -3) & -5 & (+)(-)=(-) & Undefined\\ (-3, \frac{8}{3}) & 0 & (+)(+)=(+) & (+)\\ (\frac{8}{3},\infty) & 5 & (-)(+)=(-) & Undefined \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. The domain is: $\left[-3, \frac{8}{3}\right] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.