College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 67

Answer

$x\displaystyle \in\left\{\frac{-1- \sqrt {7}i}{2}, \frac{-1 + \sqrt {7}i}{2}, 1, 3\right\}$ with a multiplicty of $1$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=6x^4-18x^{3}+6x^{2}-30x+36$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm2,\pm3,\pm4,\pm6,\pm9,\pm12,\pm18,\pm36$ $q:\qquad \pm 1, \pm 2, \pm3, \pm6,$ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm2,\pm3,\pm4,\pm6,\pm9,\pm12,\pm18,\pm36 \pm \frac{1}{2},\pm\frac{1}{3}, \pm\frac{1}{6}, \pm\frac{2}{3}, \pm\frac{3}{2},\pm\frac{4}{3},\pm\frac{9}{2}$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &6& -18 & 6 & -30 & 36\\ & & 6&-12 & -6 & -36\\ & -- & -- & -- & --\\ & 6&-12 & -6 & -36 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(6x^3-12x^{2} -6x-36)$ Try for $x=3$: $\begin{array}{lllll} \underline{3}| & 6 & -12 & -6 & -36\\ & & 18 & 18 & 36\\ & -- & -- & -- & --\\ & 6 & 6 & 12 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-1)(x-3)(6x^2+6x+12)$ c. Solving for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm\sqrt {b^2-4ac}}{2a}$. In this case, $6x^2+6x+12$, $x= \frac{-6\pm\sqrt {6^2-4\times6 \times12}}{2\times 6}=-=\frac{-6\pm 6\sqrt {7}i}{12}=\frac{-1\pm \sqrt {7}i}{2}$ $x\displaystyle \in\left\{\frac{-1- \sqrt {7}i}{2}, \frac{-1 + \sqrt {7}i}{2}, 1, 3\right\}$ with a multiplicty of $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.