College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 66

Answer

$x=-\frac{1}{3}$ with a multiplicty of $2$ and $x=\frac{1}{2}$ with a multiplicty of $1$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x)$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=18x^{3}+3x^{2}-4x-1$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1,$ $q:\qquad \pm 1, \pm 2, \pm3, \pm6, \pm9, \pm18$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm \frac{1}{2},\pm\frac{1}{3}, \pm\frac{1}{6}, \pm\frac{1}{9}, \pm\frac{1}{18}$ b. Try for $x=\frac{1}{2}:$ $\begin{array}{lllll} \underline{\frac{1}{2}}| & 18 & 3 & -4 & -1\\ & & 9 & 6 & 1\\ & -- & -- & -- & --\\ & 18 & 12 & 2 & |\underline{0} \end{array}$ $\frac{1}{2}$ is a zero, $f(x)=(x-\frac{1}{2})(18x^{2} +2x+2)$ c. Factorize the trinomial factor $(18x^{2} +12x+2)$ (find two factors of $2(18)=36$ whose sum is $12):$ $(+6$ and $+6$) $18x^{2} +12x+2=18x^{2} +6x+6x+2 \quad$...factor in pairs ... $=6x(3x+1)+2(3x+1)=(3x+1)(6x+2)=(3x+1)(3x+1)2=2(3x+1)^2$ $f(x)=(2x-1)(3x+1)^2$ The zeros of f satisfy $f(x)=0$ $(2x-1)(3x+1)^2=0$ The zeros are: $x=-\frac{1}{3}$ with a multiplicity of $2$ and $x=\frac{1}{2}$ with a multiplicity of $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.