College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 59

Answer

$x \in \{-3, 1, 5\}$ all with a multiplicity of $1$

Work Step by Step

See the Rational Zeros Theorem If $\frac{p}{q}$ is a zero of the polynomial $f(x) $ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-3x^2-13x+15$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 3, \pm5, \pm15$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm3,\pm5,\pm15$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & -3 & -13 & 15\\ & & 1 & -2 & -15\\ & -- & -- & -- & --\\ & 1 & -2 & -15 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-2)(x^{2} -2x-15)$ c. Factorizing the trinomial $(x^2-2x-15)$ (find factors of $-15(1)=-15$ whose sum is $-2$): ($-5$ and $+3$). thus, $x^2-2x-15=x^2+3x-5x-15=x(x+3)-5(x+3)=(x-5)(x+3)$ $f(x)=(x-1)(x-5)(x+3)$, thus, the zeros are: $x \in \{-3, 1, 5\}$ all with a multiplicity of $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.