College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 63

Answer

$x \in \{-2, 2\}$ with a multiplicity of $1$ and $x \in \{1\}$ with a multiplicty of $3$

Work Step by Step

See The Rational Zero Theorem: If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x)$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^5-3x^4-x^{3}+11x^{2}-12x+4$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm4,$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm2, \pm4,$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &1& -3 & -1 & 11 & -12& 4\\ & & 1 &-2 & -3 & 8& -4\\ & -- & -- & -- & --\\ & 1&-2 & -3 & 8& -4 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^4-2x^3-3x^{2} +8x-4)$ Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &1& -2& -3 &8& -4\\ & & 1&-1 & -4 & 4\\ & -- & -- & -- & --\\ & 1 & -1 &-4 & 4 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)^2(x^3-x^2-4x+4)$ c. Solving for the quadrinomial, factorizing the quadrinomial: $x^3-x^2-4x+4=x^2(x-1)-4(x-1)=(x^2-4)(x-1)$. thus, $(x^2-4)(x-1)^3=0$. $x^2-4=0, x^2=4, x=\pm2$ or $x-1=0, x=1$ therefore, the zeros are: $x \in \{-2, 2\}$ with a multiplicity of $1$ and $x \in \{1\}$ with a multiplicty of $3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.