College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 61

Answer

$x \in \{-1-2i, -1+2i\}$ with a multiplicity of $1$ and $x \in \{-2\}$ with a multiplicity of $2$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x)$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4+6x^{3}+17x^{2}+28x+20$ a. candidates for zeros, $ \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm4, \pm5, \pm10, \pm20$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm4, \pm5, \pm10, \pm20$ b. Try for $x=-2:$ $\begin{array}{lllll} \underline{-2}| &1& 6 & 17 & 28 & 20\\ & & -2 &-8 & -18 & -20\\ & -- & -- & -- & --\\ & 1&4 & 9 & 10 & |\underline{0} \end{array}$ $-2$ is a zero, $f(x)=(x+2)(x^3+4x^{2} +9x+10)$ Try for $x=-2:$ $\begin{array}{lllll} \underline{-2}| &1& 4 & 9 & 10\\ & & -2 & -4 & -10\\ & -- & -- & -- & --\\ & 1 & 2 & 5 & |\underline{0} \end{array}$ $-2$ is a zero, $f(x)=(x+2)^2(x^2+2x+5)$ c. Solving for the trinomial using quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm\sqrt {b^2-4ac}}{2a}$. In this case, $x^2+2x+5$, $x=\frac{-2\pm\sqrt {2^2-4 \times 1 \times5}}{2\times 1}=\frac{-2 \pm4i}{2}=-1\pm2i$. Thus, the zeros are : $x \in \{-1-2i, -1+2i\}$ with a multiplicity of $1$ and $x \in \{-2\}$ with a multiplicity of $2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.