College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Chapter 3 Review - Exercises - Page 357: 62

Answer

$x \in \{-1-\sqrt {6}, -1+\sqrt {6}, -1, -4\}$ with a multiplicity of $1$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x)$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4+7x^{3}+9x^{2}-17x-20$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm4, \pm5, \pm10, \pm20$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1,\pm2, \pm4, \pm5, \pm10, \pm20$ b. Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}| &1& 7 & 9 & -17 & -20\\ & & -1 &-6 & -3 & 20\\ & -- & -- & -- & --\\ & 1&6 & 3 & -20 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(x^3+6x^{2} +3x-20)$ Try for $x=-4:$ $\begin{array}{lllll} \underline{-4}| &1& 6 & 3 & -20\\ & & -4 & -8 & 20\\ & -- & -- & -- & --\\ & 1 & 2 & -5 & |\underline{0} \end{array}$ $-4$ is a zero, $f(x)=(x+1)(x+4)(x^2+2x-5)$ c. solving for the trinomial using quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm\sqrt {b^2-4ac}}{2a}$. In this case, $x^2+2x-5$, $x=\frac{-2\pm\sqrt {2^2-4 \times 1 \times(-5)}}{2\times 1}=\frac{-2 \pm 2\sqrt {6}}{2}=-1\pm \sqrt {6}$. Thus, the zeros are : $x \in \{-1-\sqrt {6}, -1+\sqrt {6}, -1, -4\}$ with a multiplicity of $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.