College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 48

Answer

$x\in \{-3, -\frac{1}{\sqrt2}i, \frac{1}{\sqrt2}i, 2\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=2x^4+2x^3-11x^2+x-6,$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2,\pm3,$ $q:\qquad \pm 1,\pm2$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2,\pm3,\pm\frac{1}{2},\pm\frac{3}{2}$ b. Try for $x=2:$ $\begin{array}{lllll} \underline{2}| &2& 2 & -11 & 1& -6\\ & & 4&12 & 2&6\\ & -- & -- & -- & --\\ & 2&6 & 1&3 & |\underline{0} \end{array}$ $f(x)=(x-2)(2x^3+6x^2+x+3),$ $(2x^3+6x^2+x+3),$ $2x^2(x+3)+1(x+3),$ $(2x^2+1)(x+3),$ $f(x)=(x-2)(2x^2+1)(x+3)$ $x\in \{-3, -\frac{1}{\sqrt2}i, \frac{1}{\sqrt2}i, 2\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.