College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 36

Answer

$x\in \{-3, -1, -\frac{1}{2}, 1\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=2x^4+7x^3+x^2-7x-3,$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 3,$ $q:\qquad \pm 1, \pm2$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 3, \pm \frac{1}{2}, \pm\frac{3}{2}$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| &2& 7 & 1 & -7 & -3\\ & & 2 & 9 & 10&3\\ & -- & -- & -- & --\\ & 2 & 9 & 10&3 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(2x^3+9x^2+10x+3)$ Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}| & 2 & 9 & 10 & 3\\ & & -2 & -7&-3\\ & -- & -- & -- & --\\ & 2 & 7&3 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x-1)(x+1)(2x^2+7x+3)$ $2x^2+7x+3,$ $2x^2+x+6x+3,$ $x(2x+1)+3(2x+1),$ $(x+3)(2x+1),$ $f(x)=(x-1)(x+1)(x+3)(2x+1)$ $x\in \{-3, -1, -\frac{1}{2}, 1\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.