College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 46

Answer

$x\in \{-2, \frac{1}{2}\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=4x^3+4x^2-7x+2,$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2,$ $q:\qquad \pm 1,\pm2,\pm4 $ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2,\pm\frac{1}{2},\pm\frac{1}{4}$ b. Try for $x=\frac{1}{2}:$ $\begin{array}{lllll} \underline{\frac{1}{2}}| & 4 & 4 & -7 & 2\\ & & 2 & 3&-2\\ & -- & -- & -- & --\\ & 4 & 6&-4 & |\underline{0} \end{array}$ $f(x)=(2x-1)(4x^2+6x-4),$ $4x^2-2x+8x-4,$ $2x(2x-1)+4(2x-1),$ $(2x+4)(2x-1),$ $f(x)=2(2x-1)^2(x+2)$ $x\in \{-2, \frac{1}{2}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.