College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 47

Answer

$x\in \{-\sqrt5i, \sqrt5i, 2\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-4x^3+9x^2-20x+20,$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2,\pm4,\pm5$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2,\pm4,\pm5$ b. Try for $x=2:$ $\begin{array}{lllll} \underline{2}| &1& -4 & 9 & -20 & 20\\ & & 2&-4 & 10&-20\\ & -- & -- & -- & --\\ & 1&-2 & 5&-10 & |\underline{0} \end{array}$ $f(x)=(x-2)(x^3-2x^2+5x-10),$ $(x^3-2x^2+5x-10),$ $x^2(x-2)+5(x-2),$ $(x^2+5)(x-2)^2,$ $f(x)=(x^2+5)(x-2)^2=(x-\sqrt 5i)(x+\sqrt 5i)(x-2)^2$ $x\in \{-\sqrt5i, \sqrt5i, 2\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.