College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 34

Answer

$x\in \{2\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-4x^3+9x^2-20x+20$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ b. Try for $x=2:$ $\begin{array}{lllll} \underline{2}| &1& -4 & 9 & -20 & 20\\ & & 2 & -4 & 10&-20\\ & -- & -- & -- & --\\ & 1 & -2 & 5&-10 & |\underline{0} \end{array}$ $2$ is a zero, $f(x)=(x-2)(x^3-2x^2+5x-10)$ Try for $x=2:$ $\begin{array}{lllll} \underline{2}| & 1 & -2 & 5 & -10\\ & & 2 & 0&10\\ & -- & -- & -- & --\\ & 1 & 0&5 & |\underline{0} \end{array}$ $2$ is a zero, $f(x)=(x-2)^2(x^2+5)$ $x\in \{2\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.