College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 31

Answer

$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3} , \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm3$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=12x^8-x^7+6x^4-x^3+x-3$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 3$ $q:\qquad \pm 1, \pm 2,\pm3,\pm4,\pm6,\pm12$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3} , \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.