College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 32

Answer

$x\in \{-2, 1, 4\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^3-3x^2-6x+8$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm 4, \pm 8$ $q:\qquad \pm 1, $ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2,\pm4, \pm 8$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & -3 & -6 & 8\\ & & 1 & -2 & -8\\ & -- & -- & -- & --\\ & 1 & -2 & -8 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^2-2x+8)$ c. Factorize the trinomial factor $(x^2-2x+8)$ (find two factors of $1(8)=8$ whose sum is $-2):$ $(2$ and $-4$) $x^{2} -2x+8=x^{2} +2x-4x-8 \quad$...factor in pairs ... $x(x+2)-4(x+2)=(x+2)(x-4)$ $f(x)=(x-1)(x-4)(x+2)$ The zeros of f satisfy $f(x)=0$ $x\in \{-2, 1, 4\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.