College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Review Exercises - Page 398: 33

Answer

$x\in \{-2, \frac{1}{2}\}$

Work Step by Step

See The Rational Zero Theorem: ... If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=4x^3+4x^2-7x+2$ a. candidates for zeros, $\displaystyle \frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, $ $q:\qquad \pm 1, \pm2,\pm4$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2,\pm\frac{1}{2}, \pm \frac{1}{4}$ b. Try for $x=-2:$ $\begin{array}{lllll} \underline{-2}| & 4 & 4 & -7 & 2\\ & & -8 & 8 & -2\\ & -- & -- & -- & --\\ & 4 & -4 & 1 & |\underline{0} \end{array}$ $-2$ is a zero, $f(x)=(x+2)(4x^2-4x+1)$ c. Factorize the trinomial factor $(4x^2-4x+1)$ (find two factors of $1(4)=4$ whose sum is $-4):$ $(-2$ and $-2$) $4x^{2} -4x+1=4x^{2} -2x-2x+1 \quad$...factor in pairs ... $2x(2x-1)-1(2x-1)=(2x-1)^2$ $f(x)=(x+2)(2x-1)^2$ The zeros of f satisfy $f(x)=0$ $x\in \{-2, \frac{1}{2}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.