Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 8 - 8.3 - Vectors in the Plane - 8.3 Exercises - Page 586: 71

Answer

$\lt 2, 2 \sqrt 3+4 \gt $

Work Step by Step

The component form of the vector $u$ is: $ u=||u|| \lt \cos \theta_{u} , \sin \theta_{u} \gt =4 \lt \cos 60^{\circ},\sin 60^{\circ} \gt \\= 4 \lt \dfrac{1}{2},\dfrac{\sqrt {3}}{2} \gt \\= \lt 2 , 2 \sqrt 3 \gt$ Now, the component form of the vector $v$ is: $ v=||v|| \lt \cos \theta_{v} , \sin \theta_{v} \gt =4 \lt \cos 90^{\circ},\sin 90^{\circ} \gt \\= 4 \lt 0,1 \gt \\= \lt 0,4 \gt$ Thus, $u+v=\lt 2 , 2 \sqrt 3 \gt+\lt 0,4 \gt = \lt 2, 2 \sqrt 3+4 \gt $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.