Answer
$f(x)=x^3-7x^2+9x+9$
Work Step by Step
$f(x)=a(x-3)[x-(2+\sqrt 7)][x-(2-\sqrt 7)]=a(x-3)[(x-2)-\sqrt 7][(x-2)+\sqrt 7]=a(x-3)[(x-2)^2-(\sqrt 7)^2]=a(x-3)(x^2-4x+4-7)=a(x-3)(x^2-4x-3)=a(x^3-7x^2+9x+9)$
$a$ can be any value. If $a=1$:
$f(x)=x^3-7x^2+9x+9$