#### Answer

$\dfrac{3}{\sqrt[3]{4x^{2}}}=\dfrac{3\sqrt[3]{2x}}{2x}$

#### Work Step by Step

$\dfrac{3}{\sqrt[3]{4x^{2}}}$
Multiply the fraction by $\dfrac{\sqrt[3]{2x}}{\sqrt[3]{2x}}$ and simplify:
$\dfrac{3}{\sqrt[3]{4x^{2}}}=\dfrac{3}{\sqrt[3]{4x^{2}}}\cdot\dfrac{\sqrt[3]{2x}}{\sqrt[3]{2x}}=\dfrac{3\sqrt[3]{2x}}{\sqrt[3]{8x^{3}}}=\dfrac{3\sqrt[3]{2x}}{2x}$