#### Answer

$\dfrac{5}{\sqrt[3]{3y}}=\dfrac{5\sqrt[3]{9y^{2}}}{3y}$

#### Work Step by Step

$\dfrac{5}{\sqrt[3]{3y}}$
Multiply the fraction by $\dfrac{\sqrt[3]{9y^{2}}}{\sqrt[3]{9y^{2}}}$ and simplify:
$\dfrac{5}{\sqrt[3]{3y}}=\dfrac{5}{\sqrt[3]{3y}}\cdot\dfrac{\sqrt[3]{9y^{2}}}{\sqrt[3]{9y^{2}}}=\dfrac{5\sqrt[3]{9y^{2}}}{\sqrt[3]{27y^{3}}}=\dfrac{5\sqrt[3]{9y^{2}}}{3y}$