#### Answer

$\dfrac{3}{\sqrt{8x}}=\dfrac{3\sqrt{8x}}{8x}$

#### Work Step by Step

$\dfrac{3}{\sqrt{8x}}$
Multiply the fraction by $\dfrac{\sqrt{8x}}{\sqrt{8x}}$ and simplify:
$\dfrac{3}{\sqrt{8x}}=\dfrac{3}{\sqrt{8x}}\cdot\dfrac{\sqrt{8x}}{\sqrt{8x}}=\dfrac{3\sqrt{8x}}{\sqrt{(8x)^{2}}}=\dfrac{3\sqrt{8x}}{8x}$