#### Answer

$\sqrt[3]{\dfrac{7}{10}}=\dfrac{\sqrt[3]{700}}{10}$

#### Work Step by Step

$\sqrt[3]{\dfrac{7}{10}}$
Rewrite the expression as $\dfrac{\sqrt[3]{7}}{\sqrt[3]{10}}$:
$\sqrt[3]{\dfrac{7}{10}}=\dfrac{\sqrt[3]{7}}{\sqrt[3]{10}}=...$
Multiply the fraction by $\dfrac{\sqrt[3]{10^{2}}}{\sqrt[3]{10^{2}}}$ and simplify:
$...=\dfrac{\sqrt[3]{7}}{\sqrt[3]{10}}\cdot\dfrac{\sqrt[3]{10^{2}}}{\sqrt[3]{10^{2}}}=\dfrac{\sqrt[3]{7\cdot10^{2}}}{\sqrt[3]{10^{3}}}=\dfrac{\sqrt[3]{700}}{10}$