#### Answer

$\dfrac{4}{\sqrt[3]{3}}=\dfrac{4\sqrt[3]{9}}{3}$

#### Work Step by Step

$\dfrac{4}{\sqrt[3]{3}}$
Multiply the fraction by $\dfrac{\sqrt[3]{3^{2}}}{\sqrt[3]{3^{2}}}$ and simplify:
$\dfrac{4}{\sqrt[3]{3}}=\dfrac{4}{\sqrt[3]{3}}\cdot\dfrac{\sqrt[3]{3^{2}}}{\sqrt[3]{3^{2}}}=\dfrac{4\sqrt[3]{9}}{\sqrt[3]{3^{3}}}=\dfrac{4\sqrt[3]{9}}{3}$