#### Answer

$\dfrac{-5\sqrt{2}}{\sqrt{11}}=\dfrac{-5\sqrt{22}}{11}$

#### Work Step by Step

$\dfrac{-5\sqrt{2}}{\sqrt{11}}$
Multiply the fraction by $\dfrac{\sqrt{11}}{\sqrt{11}}$ and simplify:
$\dfrac{-5\sqrt{2}}{\sqrt{11}}=\dfrac{-5\sqrt{2}}{\sqrt{11}}\cdot\dfrac{\sqrt{11}}{\sqrt{11}}=\dfrac{-5\sqrt{22}}{\sqrt{11^{2}}}=\dfrac{-5\sqrt{22}}{11}$