#### Answer

$\sqrt[3]{\dfrac{3}{5}}=\dfrac{\sqrt[3]{75}}{5}$

#### Work Step by Step

$\sqrt[3]{\dfrac{3}{5}}$
Rewrite this expression as $\dfrac{\sqrt[3]{3}}{\sqrt[3]{5}}$:
$\sqrt[3]{\dfrac{3}{5}}=\dfrac{\sqrt[3]{3}}{\sqrt[3]{5}}=...$
Multiply the fraction by $\dfrac{\sqrt[3]{5^{2}}}{\sqrt[3]{5^{2}}}$ and simplify:
$...=\dfrac{\sqrt[3]{3}}{\sqrt[3]{5}}\cdot\dfrac{\sqrt[3]{5^{2}}}{\sqrt[3]{5^{2}}}=\dfrac{\sqrt[3]{3\cdot25}}{\sqrt[3]{5^{3}}}=\dfrac{\sqrt[3]{75}}{5}$