Answer
$\phi = 13.7^{\circ}$
Work Step by Step
We can find $\phi$:
$tan~\phi = \frac{X_L-X_C}{R}$
$tan~\phi = \frac{\omega_d~L-\frac{1}{\omega_d~C}}{R}$
$tan~\phi = \frac{2\pi~f_d~L-\frac{1}{2\pi~f_d~C}}{R}$
$tan~\phi = \frac{(2\pi)~(60.0~Hz)~(0.230~H)-\frac{1}{(2\pi)~(60.0~Hz)~(70.0\times 10^{-6}~F)}}{200~\Omega}$
$tan~\phi = \frac{48.814~\Omega}{200~\Omega}$
$tan~\phi = 0.244$
$\phi = tan^{-1}~(0.244)$
$\phi = 13.7^{\circ}$