Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 31 - Electromagnetic Oscillations and Alternating Current - Problems - Page 937: 41b

Answer

$\phi = 13.7^{\circ}$

Work Step by Step

We can find $\phi$: $tan~\phi = \frac{X_L-X_C}{R}$ $tan~\phi = \frac{\omega_d~L-\frac{1}{\omega_d~C}}{R}$ $tan~\phi = \frac{2\pi~f_d~L-\frac{1}{2\pi~f_d~C}}{R}$ $tan~\phi = \frac{(2\pi)~(60.0~Hz)~(0.230~H)-\frac{1}{(2\pi)~(60.0~Hz)~(70.0\times 10^{-6}~F)}}{200~\Omega}$ $tan~\phi = \frac{48.814~\Omega}{200~\Omega}$ $tan~\phi = 0.244$ $\phi = tan^{-1}~(0.244)$ $\phi = 13.7^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.