Answer
$R = 490~\Omega$
Work Step by Step
On the graph, we can see that $X_C = 100~\Omega$ when $\omega_d = 250~rad/s$
Also, we can see that $Z = 500~\Omega$ when $\omega_d = 250~rad/s$
We can find $R$:
$Z = \sqrt{R^2+X_C^2} = 500~\Omega$
$R^2+X_C^2 = (500~\Omega)^2$
$R^2 = (500~\Omega)^2-X_C^2$
$R = \sqrt{(500~\Omega)^2-X_C^2}$
$R = \sqrt{(500~\Omega)^2-(100~\Omega)^2}$
$R = 490~\Omega$