Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 20 - Entropy and the Second Law of Thermodynamics - Problems - Page 604: 14b

Answer

$\frac{\Delta E_{int} }{p_oV_o} = 6.0 $

Work Step by Step

Process $b \rightarrow c$ does not involve any volume change but the pressure increases, This is an isochoric process. To find the $\frac{\Delta E_{int}}{p_oV_o} $, we must know the $Q$ in terms of $p_oV_o$. $Q = \frac{3}{2} nR (T_c - T_b)$ Now we need to find $T_c$ and $T_b$ in terms of $p_oV_o$. Note that $p_c = 2.0p_o$ and $V_1 = 4.0 V_o$ $T_c = \frac{p_CV_c}{nR} $ $T_c = \frac{(2.0p_o)(4.0 V_o)}{nR} $ $T_c = \frac{8.0p_oV_o }{nR}$ and $T_b = \frac{p_CV_c}{nR} $ $T_b = \frac{(p_o)(4.0 V_o)}{nR} $ $T_b = \frac{4.0p_oV_o }{nR}$ Now substitute into heat energy equation. $Q = \frac{3}{2} nR (\frac{8.0p_oV_o }{nR} - \frac{4.0p_oV_o }{nR})$ $Q = \frac{3}{2} nR (\frac{4.0p_oV_o }{nR})$ $Q = 6.0p_oV_o $ The first law of thermodynamics goes $\Delta E_{int} = Q - W$ and W = 0 in isochoric. So, $\Delta E_{int} = Q$ $\Delta E_{int} =6.0p_oV_o $ $\frac{\Delta E_{int} }{p_oV_o} = 6.0 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.