Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 12 - Equilibrium and Elasticity - Problems - Page 348: 31

Answer

$$x=2.20\;m$$

Work Step by Step

Let $T_1$ is the tension in the cord which makes an angle $\theta=36.9^{\circ}$ and with the vertical and $T_2$ is the tension in the second cord which makes an angle $\phi=53.1^{\circ}$ and with the vertical. $W$ be weight of the bar. At horizontal equilibrium: $T_1\sin\theta=T_2\sin\phi\;..........(1)$ At vertical equilibrium: $T_1\cos\theta+T_2\cos\phi=W\;.......(2)$ Under rotational equilibrium: $Wx=T_2\cos\phi L$ or, $x=\frac{T_2\cos\phi L}{W}$ or, $x=\frac{T_2\cos\phi L}{T_1\cos\theta+T_2\cos\phi}$ (using Eq. $2$) or, $x=\frac{T_2\cos\phi L}{\frac{T_2\sin\phi}{\sin\theta}\cos\theta+T_2\cos\phi}$ (using Eq. $1$) or, $x=\frac{\sin\theta\sin\phi L}{\sin\phi\cos\theta+\cos\phi\sin\theta}$ or, $x=\frac{\sin\theta\sin\phi L}{\sin(\theta+\phi)}$ Substituting the given values $x=\frac{\sin36.9^{\circ}\times\sin53.1^{\circ}\times6.10}{\sin(36.9^{\circ}+53.1^{\circ})}\;m$ or, $\boxed{x=2.20\;m}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.