Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 17 - Additional Aspects of Aqueous Equilibria - Exercises - Page 769: 17.45c

Answer

The pH of this solution is going to be equal to $6.58$.

Work Step by Step

- Find the numbers of moles: $C(CH_3COOH) * V(CH_3COOH) = 0.15* 0.035 = 5.25 \times 10^{-3}$ moles $C(NaOH) * V(NaOH) = 0.15* 0.0345 = 5.175 \times 10^{-3}$ moles Write the acid-base reaction: $CH_3COOH(aq) + NaOH(aq) -- \gt NaCH_3COO(aq) + H_2O(l)$ - Total volume: 0.035 + 0.0345 = 0.0695L Since the base is the limiting reactant, only $ 0.005175$ mol of the compounds will react. Therefore: Concentration (M) = $\frac{n(mol)}{Volume(L)}$ $[CH_3COOH] = 0.00525 - 0.005175 = 7.5 \times 10^{-5}$ moles. Concentration: $\frac{7.5 \times 10^{-5}}{ 0.0695} = 1.079 \times 10^{-3}M$ $[NaOH] = 0.005175 - 0.005175 = 0$ $[NaCH_3COO] = 0 + 0.005175 = 0.005175$ moles. Concentration: $\frac{ 0.005175}{ 0.0695} = 0.07445M$ - Calculate the $pK_a$ for the acid $pKa = -log(Ka)$ $pKa = -log( 1.8 \times 10^{- 5})$ $pKa = 4.745$ - Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 4.745 + log(\frac{0.07445}{1.079 \times 10^{-3}})$ $pH = 4.745 + log(69)$ $pH = 4.745 + 1.839$ $pH = 6.584$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.