Answer
$r = a~\theta$
$r^2 = x^2+y^2$
This is a parametric representation:
$x = a~\theta~cos~\theta$
$y = a~\theta~sin~\theta$
where $-\infty \lt \theta \lt \infty$
Work Step by Step
$r^2 = x^2+y^2$
$r^2 = (a\theta~cos~\theta)^2+(a\theta~sin~\theta)^2$
$r^2 = a^2\theta^2~cos^2~\theta+a^2\theta^2~sin^2~\theta$
$r^2 = a^2\theta^2~(cos^2~\theta+~sin^2~\theta)$
$r^2 = a^2\theta^2~(1)$
$r^2 = a^2\theta^2$
$r = a~\theta$