Answer
$y = a~(t-h)^2+k$
$x=t$
where $-\infty \lt t \lt \infty$
$y = a~t^2+k$
$x = t+h$
where $-\infty \lt t \lt \infty$
Work Step by Step
$y = a~(x-h)^2+k$
We can make one parametric representation as follows:
$y = a~(t-h)^2+k$
$x=t$
where $-\infty \lt t \lt \infty$
We can make another parametric representation as follows:
$y = a~(x-h)^2+k$
$y = a~t^2+k$
$t=x-h$
$x = t+h$
where $-\infty \lt t \lt \infty$