Answer
$x = a~cos~t$
$y = b~sin~t$
$t$ in $[0,2\pi]$
Work Step by Step
$cos^2~t+sin^2~t = 1$
$\frac{a^2~cos^2~t}{a^2}+\frac{b^2~sin^2~t}{b^2} = 1$
$\frac{(a~cos~t)^2}{a^2}+\frac{(b~sin~t)^2}{b^2} = 1$
Let $~~x = a~cos~t$
Let $~~y = b~sin~t$
$\frac{x^2}{a^2}+\frac{y^2}{b^2} = 1$
Therefore, this is a parametric representation of the original equation:
$x = a~cos~t$
$y = b~sin~t$
$t$ in $[0,2\pi]$