Answer
$y = m~t-m~x_1+y_1$
$x=t$
where $-\infty \lt t \lt \infty$
$x =\frac{t - y_1+m~x_1}{m}$
$y=t$
where $-\infty \lt t \lt \infty$
Work Step by Step
$y - y_1 = m~(x-x_1)$
We can make one parametric representation as follows:
$y - y_1 = m~(x-x_1)$
$y = m~x-m~x_1+y_1$
Let $~~y = m~t-m~x_1+y_1$
$x=t$
where $-\infty \lt t \lt \infty$
We can make another parametric representation as follows:
$m~x = y - y_1+m~x_1$
$x =\frac{y - y_1+m~x_1}{m}$
Let $~~x =\frac{t - y_1+m~x_1}{m}$
$y=t$
where $-\infty \lt t \lt \infty$