Answer
$x = a~sec~t$
$y = b~tan~t$
$t$ in $[0,2\pi]$
Work Step by Step
$sec^2~t = 1+tan^2~t$
$sec^2~t - tan^2~t = 1$
$\frac{a^2~sec^2~t}{a^2}-\frac{b^2~tan^2~t}{b^2} = 1$
$\frac{(a~sec~t)^2}{a^2}-\frac{(b~tan~t)^2}{b^2} = 1$
Let $~~x = a~sec~t$
Let $~~y = b~tan~t$
$\frac{x^2}{a^2}-\frac{y^2}{b^2} = 1$
Therefore, this is a parametric representation of the original equation:
$x = a~sec~t$
$y = b~tan~t$
$t$ in $[0,2\pi]$