Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Review - Test - Page 317: 16

Answer

$P(I~win)=\frac{1}{962,598}\approx0.000001039$

Work Step by Step

The order in which the numbers are selected does not matter and no number can be selected more than once. The sample space: all the combinations of 43 distinct numbers (from 1 to 43) taken 5 at a time: $N(S)=_{43}C_5=\frac{43!}{5!(43-5)!}=\frac{43!}{5!\times38!}$ But, $43!=43\times42\times41\times40\times39\times(38\times37\times36\times...\times3\times2\times1)=43\times42\times41\times40\times39\times38!$ $N(S)=_{43}C_5=\frac{43\times42\times41\times40\times39\times38!}{5!\times38!}=\frac{43\times42\times41\times40\times39}{5\times4\times3\times2\times1}=\frac{115,511,760}{120}=962,598$ With one ticket: $N(I~win)=1$ Using the Classical Method (page 259): $P(I~win)=\frac{N(I~win)}{N(S)}=\frac{1}{962,598}\approx0.000001039$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.