Answer
$P(female~or~2)=\frac{256}{297}\approx0.8620$
Work Step by Step
The sample space: 297 individuals. So, $N(S)=297$
According to the marginal distribution (see page 235) of the first row: $N(female)=188$
Using the Empirical Approach (page 258):
$P(female)=\frac{N(female)}{N(S)}=\frac{188}{297}$
Also, from (a) and (b):
$P(2)=\frac{155}{297}$
$P(female~and~2)=\frac{87}{297}$
Using the General Addition Rule (page 273):
$P(female~or~2)=P(female)+P(2)-P(female~and~2)=\frac{188}{297}+\frac{155}{297}-\frac{87}{297}=\frac{256}{297}\approx0.8620$