Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.3 - Double-Angle, Half-Angle, and Product-Sum Formulas - 7.3 Exercises - Page 561: 42

Answer

$\sin\frac{x}{2}=\sqrt {\frac{26+5\sqrt {26}}{52}}$ $\cos\frac{x}{2}=-\sqrt {\frac{26-5\sqrt {26}}{52}}$ $\tan\frac{x}{2}=-26-5\sqrt {26}$

Work Step by Step

Given $\cot(x)=5, 180^\circ\lt x\lt 270^\circ$, we have $\tan(x)=\frac{1}{5}, \sin(x)=-\frac{\sqrt {26}}{26}, \cos(x)=-\frac{5\sqrt {26}}{26}$ and $90^\circ\lt \frac{x}{2}\lt 135^\circ$ $\sin\frac{x}{2}=\sqrt {\frac{1-\cos(x)}{2}}=\sqrt {\frac{26+5\sqrt {26}}{52}}$ $\cos\frac{x}{2}=-\sqrt {\frac{1+\cos(x)}{2}}=-\sqrt {\frac{26-5\sqrt {26}}{52}}$ $\tan\frac{x}{2}=\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}=-\sqrt {\frac{26+5\sqrt {26}}{26-5\sqrt {26}}}=-\sqrt {\frac{(26+5\sqrt {26})(26+5\sqrt {26})}{(26-5\sqrt {26})(26+5\sqrt {26})}}=-5-\sqrt {26}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.