Answer
$\frac{1}{128}(3-4cos4x+cos8x)$
Work Step by Step
Use $sin2x=2sin(x)cos(x), sin^2x=\frac{1-cos2x}{2}, cos^2x=\frac{1+cos2x}{2}$, we have
$cos^4xsin^4x=\frac{1}{16}(2sin(x)cos(x))^4=\frac{1}{16}(sin2x)^4
=\frac{1}{16}(\frac{1-cos4x}{2})^2
=\frac{1}{64}(1-2cos4x+ cos^24x)
=\frac{1}{64}(1-2cos4x+\frac{1+cos8x}{2})
=\frac{1}{128}(3-4cos4x+cos8x)$