Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 5 - Section 5.1 - The Unit Circle - 5.1 Exercises - Page 408: 40

Answer

a. $\displaystyle \overline{t}=\frac{\pi}{5}$ b. $\displaystyle \overline{t}=\frac{2\pi}{7}$ c. $\overline{t}\approx 0.28$ d. $\overline{t}\approx 0.72$

Work Step by Step

The reference number associated with the real number $t$ is the shortest distance along the unit circle between the terminal point determined by $t$ and the x-axis. For each t, find each terminal point on the unit circle (positive=counterclockwise) and associate it with the terminal point of some t between 0 and $ 2\pi$ If the terminal point "lands" in quadrants II, III or IV, choose the symmetric terminal number ($\pm\pi$) in quadrant I$:$ t in Q.II $\Rightarrow \overline{t}=\pi-t$ t in Q.III$\Rightarrow \overline{t}=t-\pi$ t in Q.IV$\Rightarrow \overline{t}=2\pi-t$ ------------------- a. The terminal point of $\displaystyle \frac{11\pi}{5}=2\pi+\frac{\pi}{5}$ is in Q.I , the same as the terminl point for $\displaystyle \frac{\pi}{5}$ its reference number is $\displaystyle \frac{\pi}{5} $. b. The terminal point of $-\displaystyle \frac{9\pi}{7}=-\pi-\frac{2\pi}{7}$ is in Q.II (clockwise, $-\pi=- \displaystyle \frac{9\pi}{9}$), the same as the terminal point of $\displaystyle \frac{5\pi}{7}$ its reference number is $\displaystyle \pi-\frac{5\pi}{7}=\frac{2\pi}{7} $ c. The terminal point of $6$ is in Q.III, (2$\pi\approx$6.28), its reference number is $2\pi-6\approx 0.28$ d. The terminal point of $t=7$ is in Q.I (2$\pi\approx$6.28) is the same terminal point as $\approx\pi+0.72$ , its reference number is $\approx 0.72$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.