Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.6 Vectors in Space - 8.6 Assess Your Understanding - Page 646: 68

Answer

See the verification below.

Work Step by Step

Let $(a,b,c)$ be the center of the sphere, $(x,y,z)$ be an arbitrary point of the sphere, and $r$ be the distance between $(a,b,c)$ and $(x,y,z)$. Then, using the Pythagorean Theorem, the standard form of the equation of the sphere can be expresses as: $r=\sqrt {(x-a)^2+(y-b)^2+(z-c)^2}$ or, squaring both sides $(x-a)^2+(y-b)^2+(z-c)^2=r^2$ This shows an equation of the sphere with radius $r$ and center at $(a,b,c)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.