Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 708: 33

Answer

See below:
1571637050

Work Step by Step

(b) In order to verify the equations, use the trigonometric identity. $\cos \left( \alpha +\beta \right)=\cos \alpha \cos \beta -\sin \alpha \sin \beta $ Now, apply the above identity in the following equation: $\cos \left( x+\frac{\pi }{2} \right)=\cos x\cos \frac{\pi }{2}-\sin x\sin \frac{\pi }{2}$ By using the values $\cos \frac{\pi }{2}=0$ and $\sin \frac{\pi }{2}=1$, we get: $\begin{align} & \cos \left( x+\frac{\pi }{2} \right)=\cos x\cos \frac{\pi }{2}-\sin x\sin \frac{\pi }{2} \\ & =\cos x.\left( 0 \right)-\sin x.\left( 1 \right) \\ & =0-\sin x \\ & =-\sin x \end{align}$ Hence, the equation $\cos \left( x+\frac{\pi }{2} \right)$ is equal to $-\sin x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.