Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.5 - The Binomial Theorum - Exercise Set - Page 1092: 53


The required solution is $4{{x}^{3}}+6{{x}^{2}}h+4x{{h}^{2}}+{{h}^{3}}$.

Work Step by Step

Let us consider the provided ratio: $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ Now, put the provided function in the above ratio: $\begin{align} & \frac{\left( {{\left( x+h \right)}^{4}}+7 \right)-\left( {{x}^{4}}+7 \right)}{h}=\frac{{{\left( x+h \right)}^{4}}+7-{{x}^{4}}-7}{h} \\ & =\frac{{{\left( x+h \right)}^{4}}-{{x}^{4}}}{h} \\ & =\frac{{{x}^{4}}+4{{x}^{3}}h+6{{x}^{2}}{{h}^{2}}+4x{{h}^{3}}+{{h}^{4}}-{{x}^{4}}}{h} \\ & =\frac{h\left( 4{{x}^{3}}+6{{x}^{2}}h+4x{{h}^{2}}+{{h}^{3}} \right)}{h} \end{align}$ So, $\frac{\left( {{\left( x+h \right)}^{4}}+7 \right)-\left( {{x}^{4}}+7 \right)}{h}=4{{x}^{3}}+6{{x}^{2}}h+4x{{h}^{2}}+{{h}^{3}}$ Thus, the ratio is $4{{x}^{3}}+6{{x}^{2}}h+4x{{h}^{2}}+{{h}^{3}}$. It is calculated by putting the function into the given ratio and the value obtained matches with the binomial expansion formula.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.