Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 8

Answer

1. \((L \circ M)(12) = 4,\quad (M \circ L)(12) = 4.\) 2. \((L \circ M)(9) = 16,\quad (M \circ L)(9) = 1.\) 3. No, \(\;L \circ M\) is **not** the same as \(M \circ L\).

Work Step by Step

## 1. The Functions \(L(a) = a^2.\) \(M(a) = a \bmod 5.\) For any integer \(a\), \(M(a)\) is the remainder when \(a\) is divided by $5$. ## 2. Compositions ### 2.1 \((L \circ M)(a)\) \[ (L \circ M)(a) \;=\; L\bigl(M(a)\bigr) \;=\; \bigl(M(a)\bigr)^2 \;=\; \bigl(a \bmod 5\bigr)^2. \] Effectively, you first reduce \(a\) mod $5$, then square the result. ### 2.2 \((M \circ L)(a)\) \[ (M \circ L)(a) \;=\; M\bigl(L(a)\bigr) \;=\; (\,a^2) \bmod 5. \] That is, you first square \(a\), then take that result mod $5$. ## 3. Evaluate at $12$ and $9$ #### (a) \((L \circ M)(12)\) 1. \(M(12) = 12 \bmod 5 = 2.\) 2. Then \(L(2) = 2^2 = 4.\) Hence \((L \circ M)(12) = 4.\) #### (b) \((M \circ L)(12)\) 1. \(L(12) = 12^2 = 144.\) 2. Then \(M(144) = 144 \bmod 5 = 4.\) Hence \((M \circ L)(12) = 4.\) #### (c) \((L \circ M)(9)\) 1. \(M(9) = 9 \bmod 5 = 4.\) 2. Then \(L(4) = 4^2 = 16.\) Hence \((L \circ M)(9) = 16.\) #### (d) \((M \circ L)(9)\) 1. \(L(9) = 9^2 = 81.\) 2. Then \(M(81) = 81 \bmod 5 = 1.\) Hence \((M \circ L)(9) = 1.\) ## 4. Comparison - For \(a=12\), both compositions yield $4$. - For \(a=9\), \((L \circ M)(9)=16\) while \((M \circ L)(9)=1.\) Therefore, the two functions \((L \circ M)\) and \((M \circ L)\) do **not** always agree. In fact, just from the \(a=9\) example, we see: \[ (L \circ M)(9) \;=\; 16 \quad\neq\quad 1 \;=\; (M \circ L)(9). \] Hence, **\(L \circ M \neq M \circ L\)** as functions on \(\mathbb{Z}\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.